Semi-Supervised Learning with Explicit Misclassification Modeling

نویسندگان

  • Massih-Reza Amini
  • Patrick Gallinari
چکیده

This paper investigates a new approach for training discriminant classifiers when only a small set of labeled data is available together with a large set of unlabeled data. This algorithm optimizes the classification maximum likelihood of a set of labeledunlabeled data, using a variant form of the Classification Expectation Maximization (CEM) algorithm. Its originality is that it makes use of both unlabeled data and of a probabilistic misclassification model for these data. The parameters of the labelerror model are learned together with the classifier parameters. We demonstrate the effectiveness of the approach on four data-sets and show the advantages of this method over a previously developed semi-supervised algorithm which does not consider imperfections in the labeling process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized mixture models, semi-supervised learning, and unknown class inference

In this paper, we discuss generalized mixture models and related semi-supervised learning methods, and show how they can be used to provide explicit methods for unknown class inference. After a brief description of standard mixture modeling and current model-based semi-supervised learning methods, we provide the generalization and discuss its computational implementation using three-stage expec...

متن کامل

Cost-Sensitive Self-Training

In some real-world applications, it is time-consuming or expensive to collect much labeled data, while unlabeled data is easier to obtain. Many semi-supervised learning methods have been proposed to deal with this problem by utilizing the unlabeled data. On the other hand, on some datasets, misclassifying different classes causes different costs, which challenges the common assumption in classi...

متن کامل

Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk

This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...

متن کامل

Minimax Binary Classifier Aggregation with General Losses

We address the problem of aggregating an ensemble of predictors with known loss bounds in a semi-supervised binary classification setting, to minimize prediction loss incurred on the unlabeled data. We find the minimax optimal predictions for a very general class of loss functions including all convex and many non-convex losses, extending a recent analysis of the problem for misclassification e...

متن کامل

Optimal Binary Classifier Aggregation for General Losses

We address the problem of aggregating an ensemble of predictors with known loss bounds in a semi-supervised binary classification setting, to minimize prediction loss incurred on the unlabeled data. We find the minimax optimal predictions for a very general class of loss functions including all convex and many non-convex losses, extending a recent analysis of the problem for misclassification e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003